

- Masterpresentation -

09/2017

Overview

1. The Pultrusion Process

2. Reinforcements

3. Resin Systems

4. Profiles & Applications

6. Sustainability

Overview

1. The Pultrusion Process

2. Reinforcements

- 3. Resin Systems
- 4. Profiles & Applications
- 6. Sustainability

Pultrusion Process

Rovings & Mats are being impregnated, formed and cured continuously

Source: Strongwell

Bobbin Creels with Breaker Bars

- Storing of the rovings
- Avoiding contact between the rovings
- Breaking up the sizing of the rovings (necessary for impregnation)

Guide Plates, Resin Bath

- Positioning and guiding of the rovings
- Minimizing friction inbetween the rovings
- Impregnating rovings and mats
- Resin supply via pump

Forming & Curing Die

- Profile forming by shape of the die
- Curing through heated die
- Heating

Pulling System, Cut-Off Saw

- Pulling the profil with caterpillar or reciprocating pullers
- Cutting profiles to desired length

Curing inside the die

 Initiation of an exothermic reaction in the die

Source: Trevor (literature)

Curing in three steps

Three steps of curing: liquid, gel, solid

Source: Trevor (literature)

Overview

1. The Pultrusion Process

2. Reinforcements

- 3. Resin Systems
- 4. Profiles & Applications
- 6. Sustainability

Types of Fibers

- Glass fibers most common
- Carbon fibers high performance
- Aramid fibers special application

Source: R&G Handbuch Faserverbundwerkstoffe, Niederstadt (literature)

Glass Fiber Advantages

- Lightweight
- Most cost-efficient
- Excellent chemical and biological resistance
- Electrical insulation
- Very high tensile strength
- Fire-Proof
- Optical transparency
- Linear elasticity with high elongation at break

Glass Fiber Types

	E-Glass	R-Glass	S-Glass	C-Glass	D-Glass
Young's Modulus [N/mm²]	73.000	86.000	86.810	71.000	55.000
Tensile Strength [N/mm²]	2.400	3.600	4.500	2.400	1.650
Thermal Expansion [10^-6/°C]	5,1	4,1	5,58	7,2	3,5
Density [g/cm³]	2,54	2,55	2,49	2,51	2,14
Shear Modulus [N/mm²]	29.920		35.578		

Source: Konstruieren mit Faser-Kunstoff-Verbunden, Schürmann (literature)

Carbon Fiber Advantages

- Best mechanical properties
- Excellent stiffness and tensile strength
- Very low density
- Outstanding fatigue behaviour
- Good chemical resistance
- Negative thermal expansion

Carbon Fiber Types

	нт	ST	IM	НМ	UHM
Young's Modulus [N/mm²]	230.000	245.000	294.000	392.000	450.000
Tensile Strength [N/mm²]	3.430	4.510	4.210	2.450	2.150
Thermal Expansion long. [10^-6/°C]	-0,455			-0,108	
Thermal Expansion trans. [10^-6/°C]	12,5			31	
Density [g/cm³]	1,74	1,8	1,74	1,81	1,9
Shear Modulus [N/mm²]	50.000			28.600	

Source: Konstruieren mit Faser-Kunstoff-Verbunden, Schürmann (literature)

Types Of Rovings

- Single-End Rovings (default)
- 300 9600 tex (g/km)
- Sizing promotes fiber-matrix adhesion

- Bulky Rovings
- Additional transversal strength
- Improved impregnation

Source: OCV

Types Of Mats

- CSM = Chopped Strand Mat + Thermoplastic Binder
- CFM = Continuous Filament Mat + Thermoplastic Binder
- Properties: Area weight (e.g. 300 g/m²),
 Basic Strand Diameter (e.g. 25 tex)

Source: Konstruieren mit Faser-Kunstoff-Verbunden, Schürmann (literature)

Types Of Mats

- Strands in various directions
- Stitched oder needled with CSM or CFM

Gives additi

Source: Konstruieren mit Faser-Kunstoff-Verbunden, Schürmann (literature)

Typical Fiber Package

- Rovings for unidirectional reinforcement
- Mats for transversal strentgh
- Veil for surface quality

Source: Fraunhofer ICT

Overview

1. The Pultrusion Process

2. Reinforcements

3. Resin Systems

- 4. Profiles & Applications
- 6. Sustainability

Resin Types

- UP Resin (iso-, ortho-, terephthalic, DCPD)
- Vinyl Ester, Epoxy Resin for special applications

Resin	Tensile Strength [N/mm²]	Young's Mod. [N/mm²]	Break. Elong. [%]	T _G [°C]	Density [g/cm³]
UP (Ortho)	60	4.800	2	125	1,22
Vinyl Ester	83	4.000	6	130	1,14
Ероху	90	3.400	5	140	1,2
Polyurethane	75-85	2.700-3.000	6-12	100-160	1.18-1.23

Source: Konstruieren mit Faser-Kunstoff-Verbunden, Schürmann (literature)

Overview

1. The Pultrusion Process

2. Reinforcements

- 3. Resin Systems
- 4. Profiles & Applications

6. Sustainability

Profiles - Advantages

- Light weight
- Corrosion free
- Applicable in chemical, alkaline or acid environment
- Electrical insulation
- Thermal insulation
- Transparent for radio and radar waves
- Material properties adjustable in a wide range
- Very low life-cycle cost
- Heat resistance (dependant on matrix)
- Fatigue endurability

Profiles - Shapes

Default shapes:

- Rods
- **Round Tubes**
- Square tubes
- Rectangular tubes
- Flat bar
- **U-channels**
- **Angles**

Source: Pultrex

Profiles - Shapes

- I-Beams
- L-Beams
- C-Beams
- T-Beams
- Z-Beams

Source: Pultrex

Profiles - Shapes

• Almost any 2 dimensional shape possible:

Source: IHandbuch FVW

Profiles – Radius Shapes

- Profiles with constant radius
- Variable shapes

Source: Thomas Technik

Profiles – Radius Shapes

- Utilize the transluzent material for optical effects
- In combination with the mechanical strengh

Source: Thomas Technik

Market Share

Share of the pultrusion technology (GRP production Europe)

	2009 (kt)	2010 (kt)	2011 (kt)	2012 (kt)	2013* (kt)
SMC	160	198	198	188	184
ВМС	56	69	69	70	71
∑ SMC/BMC	216	267	267	258	255
Hand lay-up	123	160	160	145	142
Spray-up	74	92	98	90	90
∑ Open mould	197	252	258	235	232
RTM	94	113	120	120	126
Sheets	56	72	77	78	84
Pultrusion	39	47	51	47	47
∑ Continuous processing	95	119	128	125	131
Filament winding	69	82	86	80	78
Centrifugal casting	55	66	69	67	66
∑ Pipes and Tanks	124	148	155	147	144
GMT/LFT	75	100	105	108	114
Others	14	16	16	17	18
Sum:	<u>815</u>	<u>1.015</u>	<u>1.049</u>	<u>1.010</u>	<u>1.020</u>

2013* = estimated

Applications

- Construction & Infrastructure
- Sports & Leisure, Household
- Electric & Electronic
- Energy, Oil & Gas, Chemical
- Transportation

Applications

- Construction & Infrastructure
- Sports & Leisure, Household
- Electric & Electronic
- Energy, Oil & Gas, Chemical
- Transportation

- Roof trusses
- A-frames

- Space Frames
- Handrails

Source: ATP

Source: Pultrex

Bridges

Source: Pultrex

- Fencing
- Handrails

Source: ATP

Source: Pultrex

Source: Pultrex

Gratings

Source: Pultrex

Source: Pultrex

Cable Trays

Source: Pultrex

Source: Röchling

Cable Trays in various locations

Source: Röchling

Cable Trays in various shapes

Housing with seven doors

 Single storey building made with jute fibers

Source: Pultrex

Rail joints

Source: Exel

Anchoring bolts

Applications

- Construction & Infrastructure
- Sports & Leisure, Household
- Electric & Electronic
- Energy, Oil & Gas, Chemical
- Transportation

Sports & Leisure, Household

- Sail battens
- Fishing rods

Source: EPTA Group

Source: EPTA Group

Sports & Leisure, Household

Stadium seating

Source: Pultrex

Sports & Leisure, Household

Tool handles

Source: Exel

Applications

- Construction & Infrastructure
- Sports & Leisure, Household
- Electric & Electronic
- Energy, Oil & Gas, Chemical
- Transportation

Electric & Electronic

Radio & telephone antennas

Source: Pultrex

Electric & Electronic

 Foundation and spacers for current transformers

Source: Röchling

Source: Röchling

Electric & Electronic

 Insulating and ingition proof ladder systems

Source: Pultrex

Source: Pultrex

Source: Pultrex

Applications

- Construction & Infrastructure
- Sports & Leisure, Household
- Electric & Electronic
- Energy, Oil & Gas, Chemical
- Transportation

Structures for solar panels

Source: EPTA Group

Wind turbine blades

Source: Röchling

 Gratings and handrails for chemical plant and oil platforms

Source: Pultrex

Source: Pultrex

Gratings and handrails for cooling towers

Stairways for water and sewage treatment plants

Source: TC Domine

Source: Alto

Platforms for sewage treatment plants

Source: TC Domine

- Bridges for sewage treatment plants
- Span length: 6m
- Incl. mounts for agitators

- Caged ladder systems for tanks
- Scaffolding towers
- Platform ladders

Source: Pultrex

Source: Pultrex

Source: Pultrex

Stair towers for cooling towers

 Frameworks and handrails for tanks

Applications

- Construction & Infrastructure
- Sports & Leisure, Household
- Electric & Electronic
- Energy, Oil & Gas, Chemical
- Transportation

Source: Röchling

External paneling for busses

Source: Röchling

Internal paneling for busses

Internal paneling for trains

Source: TC Domine

Copyright Siemens AG

- Internal train panel in detail
- Pultruded, milled and drilled

- Internal train pa in detail
- Pultruded cut au milled

Source: TC Domine

© Techno-Composites Domine GmbH

Bus parts

Source: Pultrex

Source: Pultrex

- External paneling for trains and trams
- Coated surfaces of excellent quality

Source: Röchling

Source: Röchling

Body panels for trams

Source: EPTA Group

Springs

Source: Thomas Technik

Source: Thomas Technik

Overview

1. The Pultrusion Process

2. Reinforcements

- 3. Resin Systems
- 4. Profiles & Applications
- 6. Sustainability

Sustainability

Pultrusion is one of the most energy efficient processes

